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1 |  BACKGROUND

Down syndrome (trisomy 21; T21) imposes a great bur-
den to the society. The prevalence of T21 in Thailand is 

1.2 per 1,000 live births (Jaruratanasirikul et al., 2017). 
High-throughput DNA-based noninvasive prenatal screen-
ing (NIPS) has been rapidly adopted in clinical cares since 
it became commercially available in late 2011. Recent 
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Abstract
Background: To review the performance of noninvasive prenatal screening (NIPS) 
using targeted single-nucleotide polymorphisms (SNPs) approach in mixed-risk Thai 
women.
Methods: Retrospective analysis of data for detection of trisomy 21 (T21), 18 (T18), 
13 (T13), monosomy X (XO), other sex chromosome aneuploidies (SCA), and trip-
loidy/vanishing twins (VT) from a single commercial laboratory.
Results: Mean (±SD) gestational age and maternal weight were 13.2 (±2.1) weeks 
and 125.7 (±22.4) pounds, respectively (n = 8,572). From 462/8,572 (5.4%) no-calls; 
1/462 (0.2%) was uninformative SNPs, and 1/462 chose amniocentesis. Redraw set-
tled 323/460 (70%) samples with low fetal fraction (FF); and 8,434/8,572 (98.4%) 
were finally reportable, with 131 high risks (1.6%). The median (min-max) FF of 
reportable (n  =  8,434) and unreportable samples (n  =  137) samples were 10.5% 
(2.6–37.9) and 3.8% (1–14.1), respectively (p < .05). Fetal karyotypes were available 
in 106/131 (80.9%) and 52/138 (37.7%) high risk and repeated no-calls, respectively. 
The positive predictive values (PPVs) for T21 (n = 47), T18 (n = 15), T13 (n = 7), 
XO (n = 8), other SCA (n = 7), and triploidy/VT were 94%, 100%, 58.3%, 66.7%, 
70%, and 57.1%, respectively. None of repeated no-calls had aneuploidies.
Conclusion: SNP-based NIPS has high PPVs for T21 and T18. Although the propri-
etary SNPs library is not population-specific, uninformative SNPs are uncommon.
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large-scale studies have consistently reported excel-
lent performance of NIPS to detect fetal T21, trisomy 18 
(T18), trisomy 13 (T13), and sex chromosome aneuploi-
dies (SCA) in the first and second trimester of pregnancy 
(Bianchi et al., 2014; Cuckle, Benn, & Pergament, 2015; 
Gil et al., 2017; Hui et al., 2015; McCullough et al., 2014; 
Nicolaides, Syngelaki, Ashoor, Birdir, & Touzet, 2012; 
Sago, Sekizawa, & Japan, 2015; Samura et al., 2017; Shaw, 
Chen, & Cheng, 2013; Willems et al., 2014; Zhang et al., 
2015). Most NIPS platforms utilize quantitative “count-
ing” methods (whole-genome sequencing; WGS) where 
fetal chromosome copy number is determined by compar-
ing the absolute number of sequence reads from the chro-
mosome(s) of interest (ie chromosome 21) to reference 
chromosome(s). Fetal trisomy is inferred when this ratio is 
above a predetermined threshold (Futch et al., 2013). Fetal 
fraction (FF), the amount of the cell-free DNA in the mater-
nal blood that is of fetal origin, is essential for accurate test 
results (Wataganara, Bui, Choy, & Leung, 2016). Placental 
production (apoptosis) and renal excretion of cell-free DNA 
may be varied in different racial origins (DiNonno et al., 
2019; Heazell, Whitworth, Duley, & Thornton, 2015; Ryan 
et al., 2016; Wataganara, Chen, et al., 2005; Wataganara, 
Metzenbauer, Peter, Johnson, & Bianchi, 2005b). However, 
previous publications suggested that performance of WGS-
based NIPS is not affected by ethnic backgrounds (Bianchi 
et al., 2012; Manotaya et al., 2016).

The NIPS using WGS and single-nucleotide polymor-
phism (SNP) approaches may perform differently (Cuckle, 
2017; Salomon et al., 2017). Unique advantages of SNP-
based NIPS are (a) differentiation between maternal and fetal 
contributions of the sequence reads, thus help flagging the 
samples with maternal mosaicism which may cause false 
positive (FP) results, and (b) detection of additional haplo-
types, thus help identifying triploidy, uniparental disomy 
(molar pregnancy), and vanishing twin (VT) which may 
escape WGS methods (Levy & Norwitz, 2013). If needed, 
additional sets of SNPs are targeted for identification of mi-
crodeletions (Gross et al., 2016). However, SNPs approach 
may have a higher no-call rate than WGS methods, especially 
in women with consanguinity, surrogacy, and transplantation 
of solid organ or bone marrow (Zimmermann et al., 2012). A 
clinical performance study of SNP-based NIPS performed in 
USA reported approximately 80% positive predictive value 
(PPV) with very low negative predictive value (NPV) (Dar 
et al., 2014). Published data from SNP-based NIPS are more 
limited than those of WGS approach (Badeau et al., 2017). 
The proprietary library, which is not population-specific, 
contained 11,000 to 19,488 SNPs covering chromosomes 21, 
18, 13, X, and Y to determine allele identity (Zimmermann 
et al., 2012). The library has recently been truncated to 
13,392 SNPs (Ryan et al., 2016). We aimed to assess our pop-
ulation-specific performance of SNPs-based NIPS due to the 

concerns of possible differences of SNP allele frequency and 
FF in Thai women.

2 |  METHODS

2.1 | Ethical compliance

This study was approved by the Siriraj Institutional Review 
Board (COA Si 742/2017) as parts of an assessment prior 
to technology transfer with our academic laboratory 
(Department of Clinical Pathology, Faculty of Medicine 
Siriraj Hospital).

This is a retrospective analysis of collected data from 
SNP-based NIPS (PanoramaTM, Natera Inc.) in Thailand 
from October 1, 2013 until May 31, 2018. At the time of data 
collection, the test was exclusively self-paid. Only samples 
from pregnant women with singleton pregnancy were in-
cluded. Samples were excluded in cases of gestational age 
<9  weeks, multiple gestation, donor egg pregnancy, surro-
gate carrier, missing patient information or incomplete con-
sent documents, sample received >6  days after collection, 
insufficient blood volume (<13 ml), wrong collection tube 
used, or if the sample was apparently damaged. This study 
was conducted prior to the twins panel of this test has become 
available (Norwitz et al., 2019).

Written informed consent was obtained from all women 
opted for SNP-based NIPS. Maternal age (calculated from 
date of birth), weight, and gestational age were routinely re-
quested for each sample. Samples that passed quality-control 
metrics were processed at a single commercial laboratory 
(Natera Inc.). Validated methodologies were used for isola-
tion of cell-free DNA, polymerase chain reaction amplifica-
tion of targeting SNPs on chromosomes 21, 18, 13, X, and 
Y, high-throughput sequencing, and risk scoring with a pro-
prietary algorithm (Nicolaides, Syngelaki, Gil, Atanasova, & 
Markova, 2013; Pergament et al., 2014). The FF was esti-
mated from allelic ratios of SNPs on chromosomes that are 
never trisomic or monosomic in a viable pregnancy, and was 
embedded in the SNP sequencing process (Wataganara et al., 
2016). All samples with a risk score ≥99/100 and <1/10,000 
were reported as high- and low-risk for aneuploidies, respec-
tively. Additional haplotypes detected on SNPs sequencing 
heightened the risks of triploidy/VT. A second blood draw 
(redraw) was requested if total cell-free DNA, FF, or sig-
nal-to-noise ratio failed quality-control metrics. This could 
be due to sample impurity, insufficient yield of DNA after 
extraction, or failure of DNA sequencing. Redraw was not of-
fered in cases of uninformative SNPs pattern including; large 
regions (>25%) loss of heterozygosity, poor fit of the data 
to the model, or suspected maternal or fetal mosaicism (Dar 
et al., 2014). Genetic amniocentesis was offered to those with 
high-risk calls or repeated inconclusive results (no-calls).
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F I G U R E  1  Flow chart for results 
of the study. NIPS, noninvasive prenatal 
screening; SCA, sex chromosome 
aneuploidies; SNP, single nucleotide 
polymorphism; T13, trisomy 13; T18, 
trisomy 18; T21, trisomy 21; VT, vanishing 
twin; XO, monosomy X

8,659 enrolled SNP-based NIPS in Thailand from October 1, 2013 to May 31, 2018 

87 excluded (non-Thai subjects, twins)

8,572 Thai women with confirmed singleton pregnancy

8,434/8,571 (98.4%) conclusive results 

462/8,572 (5.4%) 
unreportable after the first 
draws

1/462 (0.2%) genetic amniocentesis (second draw not requested)
1/462 (0.2%) uninformative SNPs pattern (no result, second draw not 
request) 
460 second draws

138/8,571 (1.6%) repeated inconclusive 
results (1 uninformative SNP pattern included)

8,310/8,434 low-risk calls
1/8,310 confirmed T21

96/8,434 high-risk calls for T21, T18, or T13
69/77 confirmed T21, T18, or T13

18/8,434 high-risk calls for XO
8/12 confirmed XO

10/8,434 high-risk calls for SCA other than XO
7/10 confirmed SCA other than XO

7/8,434 high-risk calls for triploidy/VT
1/7 VT confirmed by ultrasound 
3/7 confirmed triploidy

323/460 (70.2%) settled 

52/138 available fetal karyotypes
0/52 confirmed T21, T18, T13, XO, SCA 
other than XO, or triploidy

T A B L E  1  Characteristics of samples with conclusive and repeated inconclusive results

Total (n = 8,571a )
Conclusive results 
(n = 8,434)

Repeated inconclusive results 
(n = 137) p value

MA (years) (mean ± SD) 35.0 ± 3.5 35 ± 3.5 35.1 ± 4.4 .6

MW (lbs.) (mean ± SD) 125.7 ± 22.4 125.2 ± 22.0 134.7 ± 26.7 <.001

GA at first draw; mean ± SD 13.2 ± 2.1 13.2 ± 2.1 13.3 ± 2.1 .3

FF; median (%) (min-max) N/Ab 10.5% (2.6–37.9) 3.8% (1–14.1)c 
(n = 80)

<.001

Abbreviations: FF, fetal fraction; GA, gestational age; lbs, pounds; MA, maternal age; MW, maternal weight; SD, standard deviation; SNP, single-nucleotide polymorphism.
aAfter exclusion of one woman who opted for genetic amniocentesis after FF in the first draw was too low. One uninformative SNP pattern was included in repeated 
inconclusive result. 
bMedian FF could not be calculated because 57/137 (42%) of repeated inconclusive results had unmeasurable FF. 
cMedian (min-max) was calculated from those with measurable FF (80/137), yet unreportable result. 

T A B L E  2  Clinical performance of single-nucleotide polymorphism-based noninvasive prenatal screening in Thai women with conclusive 
results (n = 8,434)

Types of Aneuploidy High-risk calls
Confirmatory 
testing (%) TP FP PPV (%) (95% CI) FN

T21 63 50 (79.4) 47 3 94 (83.5–98.0) 1

T18 20 15 (75) 15 0 100.0 0

T13 13 12 (92.3) 7 5 58.3 (36.8–77.1) 0

Overall (T21 + T18+T13) 96 77 (80.2) 69 8 89.6 (81.2–94.5) 0

XO 18 12 (66.7) 8 4 66.7 (42.9–84.2) 0

SCA other than XO 10 10 (100) 7 3 70 (50.5–81.8) 0

Triploidy/VT 7 7 (100) 4 3 57.1 (44.9–87.9) 0

Total 131 106 (80.9) 84 15 84.9 (77.2–90.3) 0

Abbreviations: CI, confidence interval; FP, false positive; PPV, positive predictive value; SCA, sex chromosome aneuploidies; T13, trisomy 13; T18, trisomy 18; T21, 
trisomy 21; TP, true positive; VT, vanishing twin; XO, monosomy X.
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T A B L E  3  Summary of performance of single nucleotide-based noninvasive prenatal screening for detection of trisomy 21 (T21), trisomy 18  
(T18), trisomy 13 (T13), monosomy X (XO), sex chromosome aneuploidies (SCA) other than XO, and triploidy

Publication Sample size Ethnicity Study designa Priori risk GA (weeks) FF (%) No call (%) T21 PPV (%) T18 PPV (%) T13 PPV (%) XO PPV (%)
SCA PPV 
(%)

Triploidy 
PPV (%) Remarks

Zimmermann 
B, et al. Prenat 
Diagn 2012

166 N/A Prospective Women with 
known fetal 
karyotypes

Median: 17 (euploid 
samples) and 17.5 
(aneuploidies samples)

Mean 12 (2.0–30.8) 0 100 (11/11) 100% (3/3) 100 (2/2) 100 (1/1) 66.7 (2/3) N/A Development study

Nicolaides KH, 
et al. Prenat 
Diagn 2013

242 N/A External 
validation

Women 
underwent 
CVS for fetal 
karyotyping

Median 13.1 (11.3–13.9) N/A 5.4 (13/242) 100 (25/25) 100 (3/3) 100 (1/1) 100 (2/2) 100 (1/1) 100 (1/1) External validation 
study

Samango-
Sprouse C, et al. 
Prenat Diagn 
2013

201 N/A Cross-sectional Archived samples 
with known fetal 
karyotype

Mean 13.2 (euploid 
samples) and 15.3 
(aneuploid samples)

Mean 10.9 (euploid  
samples) and 12.1  
(aneuploid samples)

6 (12/201) N/A N/A N/A N/A (sensitivity 
91.7% (CI: 
61.5–99.8)

100 (3/3) N/A Development study 
for SCA

Pergament E, 
et al. Obstet 
Gynecol 2014

1,064 N/A Prospective Mixed risk Median 14.1 (7.6–40.6: 
euploid samples) and 
14.6 (8–38.9; aneuploid 
samples)

8.1 (85/1,064) 98.1 (103/105) 100 (58/58) 12/12 (100) 90 (9/10) N/A N/A Clinical experience 
study

Dar P, et al. 
AJOG 2014

30,705 N/A Retrospective Mixed-risk Median 12.6 (3.1–40.9) Mean 10.2 (GA- 
specific SD available  
in the paper)

1 (317/30,705) 90.9 (140/154) 93.1 (27/29) 38.1 (8/21) 50 (9/18) N/A N/A Large-scale clinical 
experience study

Hall MP, et al. 
PLoS One 2014

64 N/A Case-control Archived samples 
with known fetal 
karyotype

Median 16 (12.1–22.7) Median 11.1 (2.2–30.4) N/A N/A N/A 100 (15/15) N/A N/A N/A Development study 
for T13

Nicolaides KH, 
et al. Fetal 
Diagn Ther 
2014

56 Caucasian 
82.1% (46/56), 
Afro-Caribbean 
10.7% (6/56), 
Asian 7.2% 
(4/56)

Case-control Archived samples 
with known fetal 
karyotype

11–13 Median 10.1 (3.5–18.1:  
euploid samples)  
23.4 (14.3–40.8:  
diandric triploid  
samples), 2.8  
(1.4–3.5: digynic  
triploid samples)

8.3 (4/48 of euploid 
samples)

N/A N/A N/A N/A N/A 100 (?)(4/4 
detection 
of multiple 
paternal 
haplotypes, 
suggesting 
either 
diandric 
triploidy or 
dizygotic 
twins)

Study for triploidy

Curnow KJ, et al. 
AJOG 2015

30,795 N/A Retrospective Mixed Median 12.6 (3.1–40.9) Mean 10.2 (GA- 
specific SD available  
in the paper)

1 (317/30,705) N/A N/A N/A N/A N/A 96.1 (?) 
(73/76 
confirmed 
diandric 
triploidy and 
twins)

Large-scale clinical 
experience study 
for triploidy, molar, 
and vanishing twins 
from detection of 
additional fetal 
haplotypes

Eiben B, et al. 
Ultrasound Int 
Open 2015

2,942 N/A Retrospective Mixed >9 Mean 10.2 (GA- 
specific SD available  
in the paper)

2.2 (66/2,942) 97.4 (38/39) 88.9 (8) 62.5 (5/8) 80 (4/5) N/A 100 (4/4) Clinical experience 
in Germany and 
Austria

Ryan A, et al. 
FDT 2016

587 N/A Case-control Archived samples 
with known fetal 
karyotype

Median 13 (9.0–36.7; 
euploid samples) 
and 14.6 (9.0–36.0: 
aneuploid samples)

Median 10 (2.0–46.6  
euploid samples) and  
11.6 (1.4–50.0  
aneuploid samples)

2.3 N/A (sensitivity 
99.4% 
(166/167)), 
specificity 100% 
(373/373))

N/A 
(sensitivity 
100% 
(28/28), 
specificity 
100% 
(512/512))

N/A 
(sensitivity 
100% 
(14/14), 
specificity 
100% 
(526/526))

N/A (sensitivity 
100% (7/7), 
specificity 
100% 
(533/533)

N/A N/A 
(sensitivity 
100% (4/4), 
specificity 
100% 
(540/540)

Validation of 
enhanced test 
version

(Continues)
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T A B L E  3  Summary of performance of single nucleotide-based noninvasive prenatal screening for detection of trisomy 21 (T21), trisomy 18  
(T18), trisomy 13 (T13), monosomy X (XO), sex chromosome aneuploidies (SCA) other than XO, and triploidy

Publication Sample size Ethnicity Study designa Priori risk GA (weeks) FF (%) No call (%) T21 PPV (%) T18 PPV (%) T13 PPV (%) XO PPV (%)
SCA PPV 
(%)

Triploidy 
PPV (%) Remarks
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Follow-up information on high-risk results was obtained by 
a single partner laboratory. (Bangkok Cytogenetics Center Co. 
Ltd.) Clinical follow-up was completed in December 2018. 
Results were categorized as follows: (a) true positive (TP: 
high-risk samples that were confirmed by prenatal or postna-
tal diagnostic testing, or based on clinical evaluation at birth), 
(b) false positive (FP: high-risk samples that were shown to 
be euploid by follow-up testing or based on clinical evalua-
tion at birth, (c) false negative (FN: low-risk samples that were 
reported as aneuploid by the providers). To encourage more 
validated positive cases and to find FPs, an insurance policy 
was provided by the partner laboratory from May 2017 to re-
imburse the cost of invasive diagnostic tests for women with 
high-risk call. This insurance policy could also minimize un-
reported FNs because providers were motivated to report of 
missed calls forT21, T18, and T13, whereby the woman would 
be reimbursed for 100,000 Thai Bahts (approximately 3,000 
US Dollars).

2.2 | Statistical analysis

Categorical variables were expressed as number and percent-
age. Continuous variables were expressed as percentage, 
means, standard deviation (SD), median and ranges (mini-
mum-maximum). Samples with conclusive and repeated 
inconclusive results (no-calls) were compared for maternal 
age, weight, gestational age at first draw, and FF, using inde-
pendent t test or Mann–Whitney U test. Due to wide distri-
bution of FF and relatively small sample size, FFs were not 
expressed as gestational week-specific multiples of the me-
dian, and linear regression analysis between FF and other de-
mographic variables were not performed (Ashoor, Syngelaki, 

Poon, Rezende, & Nicolaides, 2013). The performance was 
defined by aneuploidy-specific PPV (TP/(TP + FP)).

Because most of the low-risk samples were not con-
firmed by genetic test at the time of birth, true negative (TN) 
could not be accurate. We therefore chose not to calculate 
NPV (TN/(TN + FN)). Sensitivity and specificity were not 
reported because our screened population was biased (not 
every Thai women received SNP-based NIPS).

SPSS version 18 (SPSS Inc.) was used for analyzing data. 
P value less than 0.05 was considered significant.

3 |  RESULTS

The study enrollment (n = 8,659) is summarized in Figure 1. 
The majority of the samples were from private medical provid-
ers. (Bangkok Cytogenetics Center Co. Ltd., personal commu-
nication) After exclusion of 87 samples from non-Thai women 
and twins, 8,572 samples were analyzed. Indications for NIPS 
are as follows; maternal age ≥35 years (n = 3,874; 45.2%), pa-
rental anxiety (physician discretion) (n = 2,897:33.8%), posi-
tive first trimester combined test (>1:250) (n = 1,569:18.3%), 
abnormal ultrasound examination (n = 189:2.2%), and unde-
fined (n = 43:0.5%). Comparative analysis of the test perfor-
mance in each category was not performed due to inadequacy 
of power. After the first draw, the tests were unreportable in 
462 women (5.4%), of which 1 (0.2%) was due to uninforma-
tive SNP pattern. One woman opted for genetic amniocente-
sis at this point. For 460 women with low FF, a second blood 
draw could settle 323 (70%) cases. At the end, the tests were 
conclusive in 8,434 samples (98.4%); with 131 high-risk calls 
(1.6%). After exclusion of 1 woman who immediately opted 
for genetic amniocentesis, and inclusion of 1 uninformative 

Publication Sample size Ethnicity Study designa Priori risk GA (weeks) FF (%) No call (%) T21 PPV (%) T18 PPV (%) T13 PPV (%) XO PPV (%)
SCA PPV 
(%)

Triploidy 
PPV (%) Remarks

DiNonno W, 
et al. J Clin Med 
2019

1,035,844 N/A Retrospective Mixed N/A N/A N/A 95.7 (1,036/1,083) 93.9 
(447/476)

79.6 
(148/186)

91.0 (272/299) N/A N/A Only for available 
follow-up 
information for 
pregnancies in 
women with high-
risk SNP-based 
NIPS results from 
2014–2017

Panchalee T, 
et al.

8,572 Thai 100% 
(8,572/8,572)

Retrospective Mixed Median 10.5 (2.6–37.9) Mean 13.2 ± 2.1 1.6% (138/8,571) 
(1 uninformative 
SNP pattern 
included)

94 (47/50) 100 (15/15) 58.3 (7/12) 66.7 (8/12) 70 (7/10) 57.1 (4/7) Clinical experience in 
Thailand

Abbreviations: CVS, chorionic villous sampling; FF, fetal fraction; GA, gestational age; N, No; N/A, not available; NIPS, noninvasive prenatal screening; PPV,  
positive predictive value; SCA, sex chromosome aneuploidies other than XO; SD, standard deviation; SNP, single-nucleotide polymorphism; Y, Yes.
aProspective = samples drawn prior to invasive prenatal diagnosis, archived samples = drawn as part of existing screening program with known outcomes,  
mixed = mixed of both study design. 
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SNPs pattern, there were138 women (1.6%) with repeated in-
conclusive results.

Baseline characteristics are summarized in Table  1. 
Maternal age and gestational age of samples with conclusive 
and repeated inconclusive results were not significantly dif-
ferent (p > .05). Women with reportable results had signifi-
cantly lower weight and higher FF than those with repeated 
inconclusive results (n = 136; after exclusion of 2 subjects; 1 
who chose genetic amniocentesis after low FF from the first 
draw and 1 with uninformative SNPs pattern) (p < .01).

Table  2 demonstrates the clinical performance of SNP-
based NIPS. Results of confirmatory genetic test were avail-
able in of 106/131 (80.9%) of those with high-risk calls. The 
PPVs for T21, T18, and T13 were 94%, 100%, and 58.3%, re-
spectively, with an average PPV for detection of these 3 com-
mon autosomal trisomies of 89.6%. The PPVs for monosomy 
X (XO), SCA other than XO, and triploidy/VT were 66.7%, 
70%, and 57.1%, respectively. Fetal karyotypes were available 
in 52/138 women with repeated unreportable results (1 un-
informative SNP included), none of which had aneuploidies. 
We did not have molar pregnancy reported in this cohort.

Table  3 compares the performance of SNP-based NIPS 
from previous publications searchable in Pubmed. Searching 
terms were single nucleotide polymorphism, NIPS, noninva-
sive prenatal testing, Panorama. Systematic reviews were ex-
cluded. The PPVs for detection of T21 and T18 in Thai women 
were high, and comparable with other previous publications.

4 |  DISCUSSION

High PPVs for detection of T21 and T18 in Thai women of 
mixed baseline risks with SNP-based NIPS are consistent 

with studies conducted elsewhere (Table 3). The PPVs are 
prevalence-dependent, and can be used for counseling in spe-
cific population. Our redraw rate of 5.4% was similar to a 
previous study (redraw 5.4% at ≥10 weeks’ gestation) (Dar 
et al., 2014). Repeated inconclusive results (no calls) in Thai 
population are relatively low (1.6%); and persistently low FF 
remains an important cause. Although the SNPs library of 
the test was not developed from the population intended to 
screen, uninformative SNPs pattern is not a common reason 
for no-calls. Our sample size was too small for calculation of 
PPVs fortriploidy and VT.

Approximately 79% of women in our cohort chose to have 
SNP-based NIPS as a first-tier test due to advanced age and 
maternal anxiety (physician discretion). Public health care 
system in Thailand does not subsidize first trimester screen-
ing for T21, and combined first trimester screening or NIPS 
are self-paid. Thai women need to choose between combined 
tests and NIPS; considering the advantages and limitations 
of different technologies, specific gestational situations, 
psychological status, and financial constraints. Prenatal di-
agnosis of common aneuploidies in Thailand is often made 
by genetic amniocentesis in the second trimester. This makes 
the landscape of prenatal screening and diagnosis in Thailand 
quite different from developed countries whose data domi-
nate the publication domain.

Although most of human genomes are identical, a relatively 
small number of SNP, whichis an individual variation at a single 
position in DNA sequence that occurs in about every 300nucle-
otides,are varied in different ancestral descents (Yang, Wang, 
Lin, Chen, & Chen, 2012; Zhou & Wang, 2007). Instrumental 
SNP markers for a genealogic study are chosen according to 
their ethnic-specific distribution (Tocharoentanaphol et al., 
2008). The selection of <20,000 SNPs on chromosome of 

Publication Sample size Ethnicity Study designa Priori risk GA (weeks) FF (%) No call (%) T21 PPV (%) T18 PPV (%) T13 PPV (%) XO PPV (%)
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(447/476)
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(148/186)

91.0 (272/299) N/A N/A Only for available 
follow-up 
information for 
pregnancies in 
women with high-
risk SNP-based 
NIPS results from 
2014–2017

Panchalee T, 
et al.

8,572 Thai 100% 
(8,572/8,572)

Retrospective Mixed Median 10.5 (2.6–37.9) Mean 13.2 ± 2.1 1.6% (138/8,571) 
(1 uninformative 
SNP pattern 
included)

94 (47/50) 100 (15/15) 58.3 (7/12) 66.7 (8/12) 70 (7/10) 57.1 (4/7) Clinical experience in 
Thailand

Abbreviations: CVS, chorionic villous sampling; FF, fetal fraction; GA, gestational age; N, No; N/A, not available; NIPS, noninvasive prenatal screening; PPV,  
positive predictive value; SCA, sex chromosome aneuploidies other than XO; SD, standard deviation; SNP, single-nucleotide polymorphism; Y, Yes.
aProspective = samples drawn prior to invasive prenatal diagnosis, archived samples = drawn as part of existing screening program with known outcomes,  
mixed = mixed of both study design. 
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interest from 10 million SNPs in human genome to create the 
proprietary genomiclibrary was confidential (Wataganara et al., 
2016). Algorithm of SNP-based NIPS is morecomplex than 
those of WGS approaches, as it tends to a very shallow depth 
of sequencing at any given polymorphic locus. Measurement 
of FF with SNPs approach is equally accurate across popula-
tions because the quantitation assays are unbiased, uniformly 
covering chromosome 1 to 12, and maximizing the number 
of informative loci by targeting SNPs with high minor-allele 
frequencies in the HapMap dataset (ftp://ftp.ncbi.nlm.nih.gov/
hapma p/) (Juneau et al., 2014; Schmid et al., 2018; Sparks, 
Struble, Wang, Song, & Oliphant, 2012). Sequencing of SNPs 
may be the most accurate method to estimate FF because for-
eign SNPs (paternal/fetal derived) are readily apparent in the 
woman's plasma (Wataganara et al., 2016). Persistently low FF 
remains our most important cause of no-call and FN (Barrett 
et al., 2017; Canick, Palomaki, Kloza, Lambert-Messerlian, & 
Haddow, 2013; Kim et al., 2015). Low FF has been linked with 
high maternal weight or body mass index (Wataganara, Peter, 
Messerlian, Borgatta, & Bianchi, 2004). Because FF is highly 
dynamic, re-draw could settle only 70% of the cases with low 
FF from the first draw (Ashoor et al., 2013).

The main limitation of our real-life clinical performance 
study was the incomplete post-test follow-ups, particularly on 
low-risk patients, thus precluding precise calculation of sensi-
tivity, specificity, and NPV (Dar et al., 2014). Some high-risk 
calls may not have received confirmatory genetic testing due 
to the following reasons; (a) spontaneous fetal losses soon 
after NIPS, (b) unreported elective termination of pregnancy 
without karyotype confirmation, and (c) unreported birth of 
newborn babies with T21 due to parental concern of social 
stigma. Selections of subjects in most of the NIPS studies, 
including ours, were biased (Badeau et al., 2017). The SNP-
based NIPS should not replace first trimester scan because 
the test is not always informative, and the PPVs for T13, XO, 
and SCA is relatively low. Dedicated first-trimester anom-
aly scan can identify about 95% of fetuses with T18, T13, 
triploidy, and Turner syndrome (Wagner, Sonek, Hoopmann, 
Abele, & Kagan, 2016). Progressive improvement of bioin-
formatics algorithm is likely to reduce redraw, missed call, 
and no-call for those with very low FF (Larson et al., 2018; 
McKanna et al., 2019).
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